							12:17	
€	ω	=	$\cup \subset \vdash$	40.	201	U	16:1/	$-\Gamma + V +$

Name:	Date:

Section 1.2 Quadratic Functions in Standard Form $y = a(x-p)^2 + q$

1. In each of the quadratic function below, indicate the values of the constant "a", "p", "q" and the coordinate of the vertex for a quadratic function in the form of: $y = a(x-p)^2 + q$.

Equation	Constants "a", "p" and "q"	Vertex (Coord)	Equation	Constants "a", "p" and "q"	Vertex (Coord)
a) $y = 2(x-3)^2 + 4$	and q	(Coord)	g) $y = 9(x+5)^2 + 7$	р апи ч	(Coord)
			. 2		
b) $y = -3(x+0.75)^2 + 6$			h) $y = -4x^2 + 10$		
_					
c) $y = -\frac{2}{3}(x-1)^2 - 2$			i) $y = -3\left(x + \frac{2}{3}\right)^2 - 2$		
$(2)^2 \cdot 2$			2(11)2		
d) $y = (-3x)^2 + 2$			j) $y = \frac{3(x-11)^2+4}{2}$		
e) $y = (2x-1)^2 - 3$			k) $y = (3x+1)^2 + 8$		
f) $y = (3x-6)^2 - 8$			L) $y = 4x^2 + 4x + 9$		

	dinates of the Vertex, iii) Domain and Ra							
a) $y = x^2 - 5$	b) $y = -2(x+2)^2$	c) $y = 5(x-5)^2 - 10$						
Roots: A of S:	Roots: A of S:	Roots: A of S:						
Vertex: Range:	Vertex: Range:	Vertex: Range:						
d) $y = 7x^2 - 14$	e) $y = (4x - 4)^2 - 10$	f) $y = 5(3x)^2$						
Roots: A of S:								
Roots: A of S: Vertex: Range:	Roots: A of S: Vertex: Range:	Roots: A of S: Vertex: Range:						
	h) $y = -2(3-x)^2 - 14$	i) $y = \frac{2\sqrt{(x^4 + 4x^2 + 16)} + 4}{2} - 1$						
g) $y = \frac{(5x-5)^2 + 15}{5}$	()	i) $y = \frac{-\sqrt{(1 + 10^2)^2 + 10^2}}{-2} - 1$						

Roots: A of S: Roots: A of S: Roots: A of S: Vertex: Range: Vertex: Range:

3. Graph the following quadratic functions and label the Roots, Axis of Symmetry, Vertex, and Y-intercepts:

e)
$$y = 2(2x-6)^2 + 3$$

f)
$$y = \frac{(3x-9)^2+3}{3}+2$$

g)
$$y = \sqrt{\frac{(x^4 - 8x^2 + 16)}{4}} + 4$$

4. If each parabola is in the form of $y = a(x-p)^2 + q$, then which graph best describes each equation:

i)
$$a < -1, p < 0, q > 0$$

i)
$$a < -1, p < 0, q > 0$$

iii)
$$a > 0, p = 0, q < 0$$

iv) 0 > a > -1, p < 0, q > 0

5. Convert the function $y = \frac{1}{2}x^2 - 4x + 1$ into standard form.

6. If a ball is thrown upward from a height of 4 metres with an initial velocity of 6 m/s, its height, H(t), after t seconds is given by the equation $H(t) = -0.5t^2 + 6t + 4$. Determine the maximum height of the ball.

- 7. The graph of the function $y = ax^2 + bx + c$ is shown in the diagram. Which of the following statements below must be positive?
 - a) a
- b) *bc*

- c) ab^2 d) b-c e) c-a

- 8. Consider the parabola $y = 5x^2 4x + c$. The value of the real number "c" for which such a parabola touches the x-axis exactly once is: [BCSSM 2008]

- a) $-\frac{4}{5}$ b) 0 c) $\frac{2}{5}$ d) $\frac{4}{5}$ e) $\frac{\sqrt{5}}{4}$
- 9. Point "A" and "B" are on the parabola $y = 4x^2 + 7x 1$, and the origin is the midpoint of \overline{AB} . What is the length of \overline{AB} ?
- 10. The parabola $y = x^2 2x + 4$ is moved 'p" units to the right and "q" units down. The x-intercepts of the resulting parabola are 3 and 5. What are the values of "p" and "q"?

11. If $y = a(x-2)^2 + c$ and y = (2x-5)(x-b) represents the same quadratic function, what is the value of the constant "b"

13. The parabola $y = x^2 - 2x + 4$ is moved 'p" units to the right and "q" units down. The x-intercepts of the resulting parabola are 3 and 5. What are the values of "p" and "q"?

14. A line with slope 1 passes through the point "P" on the negative x-axis as shown and intersects the parabola $y = x^2$ at points Q and R. If PQ = RQ, then what is the y-intercept of line PR?

15. Challenge: The parabola $y = f(x) = x^2 + bx + c$ has vertex "P" and the parabola $y = g(x) = -x^2 + dx + e$ has vertex "Q", where "P" and "Q" are distinct points. The two parabolas also intersect at "P" and "Q". i) Prove that 2(e-c) = bd.

ii) Prove that the line through points "P" and "Q" has slope $\frac{1}{2}(b+d)$ and y-intercept $\frac{1}{2}(c+e)$